当前位置: 主页 > 生物质能 > 青岛能源所开发生物质综合利用新途径

青岛能源所开发生物质综合利用新途径

发布时间:2020-09-17 点击:生物质能能源
  

  中国科学院青岛生物能源与过程研究所热化学研究组,致力于生物质、煤和固体废弃物等含碳资源的多联产应用技术的研究开发。研究组副研究员陈天举与碳基材料与能源应用研究组副研究员何建江合作,开展生物炭活化及应用于碳锂离子电池研究。研究发现,生物质富氧气化剩余生物炭经活化处理后显示出良好的理化特性,比表面积可达1715 m2 g-1,材料呈现类石墨烯片层结构。在碳锂离子电池中的应用显示出良好的性能,在电流密度100 mA g-1条件下,平均电荷容量为327 mAh g-1;在电流密度500 mA g-1条件下,电池库伦效率可达99.5%(如)。该研究为生物半焦的下游高附加值利用拓展新途径,有望改善生物质利用过程的总体经济性能。

  生物质是自然界含碳的可再生能源,可以通过热化学过程制备液体燃料、燃气、热、电等能源产品,发展潜力较大。过程的经济性多年来是生物质能发展的瓶颈。生物质气炭联产技术可同时生产燃气和生物半焦(生物炭),燃气可通过催化制取汽油、柴油或航空煤油等能源产品;可经净化调变脱碳纯化过程,制得高纯氢用于氢燃料电池发电;生物炭经活化处理可作为土壤改良剂和炭材料。气炭联产可以实现生物质综合利用,生产高附加值产品,提高经济性。

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于,1970年学校迁至安徽省合肥市。中科大“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  相关研究发表在Energy上。研究工作得到科技部重点研发计划项目和国家自然科学基金委的资助。

  生物质是自然界含碳的可再生能源,可以通过热化学过程制备液体燃料、燃气、热、电等能源产品,发展潜力较大。过程的经济性多年来是生物质能发展的瓶颈。生物质气炭联产技术可同时生产燃气和生物半焦(生物炭),燃气可通过催化制取汽油、柴油或航空煤油等能源产品;可经净化调变脱碳纯化过程,制得高纯氢用于氢燃料电池发电;生物炭经活化处理可作为土壤改良剂和炭材料。气炭联产可以实现生物质综合利用,生产高附加值产品,提高经济性。

  生物炭理化特性及碳锂离子电池特性:(a)BET (b)TEM (c)电流对吸放电影响 (d)恒电流下吸放电和库伦效率

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  中国科学院青岛生物能源与过程研究所热化学研究组,致力于生物质、煤和固体废弃物等含碳资源的多联产应用技术的研究开发。研究组副研究员陈天举与碳基材料与能源应用研究组副研究员何建江合作,开展生物炭活化及应用于碳锂离子电池研究。研究发现,生物质富氧气化剩余生物炭经活化处理后显示出良好的理化特性,比表面积可达1715 m2g-1,材料呈现类石墨烯片层结构。在碳锂离子电池中的应用显示出良好的性能,在电流密度100 mA g-1条件下,平均电荷容量为327 mAh g-1;在电流密度500 mA g-1条件下,电池库伦效率可达99.5%(如)。该研究为生物半焦的下游高附加值利用拓展新途径,有望改善生物质利用过程的总体经济性能。

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和做出了不可替代的重要贡献。更多简介 +

  相关研究发表在Energy上。研究工作得到科技部重点研发计划项目和国家自然科学基金委的资助。

  生物炭理化特性及碳锂离子电池特性:(a)BET (b)TEM (c)电流对吸放电影响 (d)恒电流下吸放电和库伦效率

    顶一下
    (0)
    0%
    踩一下
    (0)
    0%
    精彩推荐